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Abstract

We introduce the notion of bilinear moment functional and study their general properties.

The analogue of Favard’s theorem for moment functionals is proven. The notion of

semiclassical bilinear functionals is introduced as a generalization of the corresponding notion

for moment functionals and motivated by the applications to multi-matrix random models.

Integral representations of such functionals are derived and shown to be linearly independent.
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1. Introduction

The notion of moment functional is most commonly encountered as a general-
ization of the context of orthogonal polynomials (OP) [18]. These are generally

defined as a graded polynomial orthonormal basis in L2ðR; dmÞ where dm is a given
positive measure for which all moments

mi :¼
Z
R

dmðxÞ xi ð1:1Þ
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Succ. centre ville, Montréal, Qué., Canada H3C 3J7. Fax: 1-514-343-2254.

E-mail address: bertola@crm.umontreal.ca.

0021-9045/03/$ - see front matter r 2002 Elsevier Science (USA). All rights reserved.

doi:10.1016/S0021-9045(02)00044-8



are finite. The moment functional associated to such a measure is then the elementL

in the dual space of polynomials C½x�3 defined by

LðpðxÞÞ :¼
Z
R

dm pðxÞ; ð1:2Þ

and it is uniquely characterized by its moments. The positivity of the measure implies
that we can always find orthogonal polynomials with real coefficients so that the
orthogonality relation reads

LðpmðxÞpnðxÞÞ ¼ hndnm; ð1:3Þ

pnðxÞ ¼ xn þ Oðxn�1ÞAR½x�; hnAR�
þ: ð1:4Þ

Generalizing this picture one is led to consider complex functionals [3], i.e., a
functional whose moments are not necessarily real. The associated OPs are then
defined by the same relations (1.3) where now the polynomials belong to the ring
C½x� and hn are nonzero complex numbers.

One of the main applications of OPs is in the context of random matrices [12,13]
where they allow to write explicit expressions for the correlation functions of
eigenvalues and of the partition function of these models.

Recently [2,4,6,14] growing attention is devoted to the 2-matrix models (or the
multi-matrix models) in which the probability space is the space of couples (or n-
tuples) of matrices. Also, such models can be ‘‘solved’’ along lines similar to the one
matrix models by finding certain biorthogonal polynomials (BOP). The probability
measure is given by

dmðM1;M2Þ ¼
1

Zn

eTrðM1M2Þ dm1ðM1Þ dm2ðM2Þ; ð1:5Þ

where Mi are usually N � N Hermitian matrices, dmi’s are UðNÞ invariant positive
measures and the constantZn is to insure that the measure of the total space is 1 and
it is called the partition function. The relevant BOPs are then a pair of graded
polynomial bases fpnðxÞg; fsnðyÞg ‘‘dual’’ to each other in the sense thatZ

R

Z
R

dm1ðxÞ dm2ðyÞ pnðxÞsmðyÞexy ¼ hndnm; ð1:6Þ

pnAR½x�; snAR½y�; hnAR�: ð1:7Þ

The integral in Eq. (1.6) defines a particular kind of bimoment functional, that is, an
element of the dual to the tensor product of two spaces of polynomials C½x�#CC½y�

LðpðxÞjsðyÞÞ :¼
Z
R

Z
R

dm1ðxÞ dm2ðyÞ pðxÞsðyÞexy; ð1:8Þ

provided all its bimoments mij are finite

mij :¼ LðxijyjÞAR: ð1:9Þ

Generalizing this picture we now consider complex bimoment functionals which are
uniquely characterized by their (complex) bimoments mijAC:
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The notion of semiclassical moment functional for a functional of the form (1.2)
requires that the measure dmðxÞ has a density WðxÞ whose logarithmic derivative is a
rational function of x and the support is a finite union of intervals. This condition
can be translated into a distributional equation for the moment functional itself and
then generalized to the complex case [8,11,17].

Motivated by the applications to two-matrix models, we are interested in the
corresponding notion of semiclassical bimoment functionals (which we will define
properly later on) and in studying their properties: we will produce (complex path)
integral representations for them, generalizing the framework of [7,9,10] to this
situation.

We quickly recall that [8,11,17] a moment functional L is called semiclassical if
there exist two (minimal) fixed polynomials AðxÞ and BðxÞ with the properties that

Lð�BðxÞp0ðxÞ þ AðxÞpðxÞÞ ¼ 0; 8pðxÞAC½x�: ð1:10Þ

The integral representation was obtained in [7,9,10]: we can quickly reprove here
their result (without details) in a different way which was not used there and which is
in the line of approach of this paper. Consequence of the definition is that the
(possibly formal) generating power series

FðzÞ :¼
XN
k¼0

mk

zk

k!
ð‘‘ ¼ 00LðexzÞÞ; mk :¼ LðxkÞ; ð1:11Þ

satisfies the nth-order linear ODE

zB
d

dz

� �
� A

d

dz

� �� �
FðzÞ ¼ 0: ð1:12Þ

The order n is the highest of the degrees of AðxÞ; BðxÞ and it is referred to—in this
context—as the class. A distinction occurs according to the cases degðAÞodeg B

(Case A in [10]) or degðAÞXdegðBÞ (Case B). By looking at the recursion relation
satisfied by the moments mk one realizes that there are precisely n linearly
independent solutions if in Case B or n � 1 in Case A1 and hence the functionals
are in one-to-one correspondence with the solutions of Eq. (1.12) which are analytic
at z ¼ 0: It is precisely the result of [15] that the fundamental system of solutions of
Eq. (1.12) are expressible as Laplace integral transform of the weight density

WðxÞ :¼ exp

Z
dx

AðxÞ þ B0ðxÞ
BðxÞ

� �
ð1:13Þ

(which may have also branch-points) over n distinct suitably chosen contours Gj;

FjðzÞ :¼
Z
Gj

dx WðxÞexz: ð1:14Þ

1 In Case A and if AðxÞc0 there is a linear constraint on the initial assumptions for the recurrence

relation, which decreases the dimension of solution space by one. If AðxÞ � 0 then the solutions of the

functional equation can be found easily.

M. Bertola / Journal of Approximation Theory 121 (2003) 71–99 73



In Case A one should actually reject one solution among them, i.e. the one with a
singularity at the origin, or better consider only the linear combinations which are
analytic at z ¼ 0:

In the present paper the bimoment functionals we consider will rather correspond
to generating functions in two variables satisfying an over-determined (but
compatible) system of PDEs, and the fundamental solutions will be representable
as suitably chosen double Laplace integrals.

The paper is organized as follows: in Section 2 we introduce the basic objects and
definitions, recalling how to explicitly construct the BOPs from the matrix of
bimoments. We also prove that the BOPs uniquely determine the bimoment
functional: this is the analog in this setting of Favard’s Theorem which allows to
reconstruct a moment functional from any sequence of polynomials which satisfy a
three-term recurrence relation.

In Section 3 we introduce the definition of semiclassical functionals and then prove
that (under certain general assumptions) they are representable as integrals of
suitable 2-forms over Cartesian products of complex paths. The starting point is the
fact already mentioned that the generating function of bimoments now depends on
two variables z;w and satisfies an over-determined system of PDEs. We will prove
the compatibility of this system (in the class of cases specified in the text) and then
we will solve it. The solutions that we obtain (in the cases we consider) are entire
functions of both variables z;w so that one could derive bounds on the growth of the
bimoments (the coefficients of the Taylor series centred at z ¼ 0 ¼ w). It should also
be remarked that all semiclassical linear moment functionals can be recovered as a
special case of bilinear ones (see Remark 3.1): this correspond to the fact that one-
matrix models can be recovered from two-matrix models when one of the measures is
Gaussian.

2. Definitions and first properties

By bimoment functional we mean a bilinear functionalL on the tensor product of
two copies of the space of polynomials

L :C½x�#C½y�-C: ð2:15Þ

Although the two polynomial spaces are just copies of the same space, we use two
different indeterminates x and y in order to distinguish them. Such a functional is
uniquely determined by its bimoments

mij :¼ LðxijyjÞ: ð2:16Þ

It makes sense to look for biorthogonal polynomials. We recall their definition and
some standard facts [5,12].

Definition 2.1. Two sequences of polynomials fpnðxÞgnAN and fsnðyÞgnAN of

exact degree n are said to be biorthogonal with respect to the bimoment functional
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L if

LðpnjsmÞ ¼ dnm: ð2:17Þ

If such two sequences exist then we denote by fpnðxÞgnAN and fsnðyÞgnAN the

corresponding sequences of monic polynomials, which then satisfy

LðpnjsmÞ ¼ hndnm; hna0 8nAN: ð2:18Þ

It is an adaptation of the classical result for orthogonal polynomials to write a
formula for the monic sequences

Proposition 2.1. The biorthogonal polynomials exist if and only if

Dna0; nAN; Dn :¼ det

m0;0 m0;1 ? m0;n�1

m1;0 m1;1 ? m1;n�1

^ ? ? ^

mn�1;0 mn�1;1 ? mn�1;n�1

0
BBBB@

1
CCCCA: ð2:19Þ

Under this hypothesis the monic sequences fpngnAN and fsngnAN are given by the

formulas

pnðxÞ :¼
1

Dn

det

m0;0 ? m0;n�1 1

m1;0 ? m1;n�1 x

^ ? ? ^

mn;0 ? mn;n�1 xn

0
BBBB@

1
CCCCA; ð2:20Þ

snðyÞ :¼
1

Dn

det

m0;0 ? m0;n�1 m0;n
m1;0 ? m1;n�1 m1;n
^ ? ? ^

1 ? yn�1 yn

0
BBBB@

1
CCCCA: ð2:21Þ

The proof of this simple proposition is essentially the same as for the orthogonal
polynomials and it is left to the reader (see [5,12]). With formula (2.21) we can also
compute

LðpnjsmÞ ¼
Dnþ1

Dn

dnm: ð2:22Þ

The relation with the normalized polynomials is

pnðxÞ ¼ cnpnðxÞ; snðyÞ :¼ c̃nsnðyÞ; ð2:23Þ

where the complex constants cn and c̃n are such that cnc̃n ¼ Dnþ1

Dn
: If biorthogonal

polynomials exist they, in general, do not satisfy a three-term recurrence relation as
for the standard orthogonal polynomials: they rather satisfy recurrence relations
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which generally are not of finite bands:

xpnðxÞ ¼ gnpnþ1ðxÞ þ
Xn

j¼0

ajðnÞpn�jðxÞ; ð2:24Þ

ysnðyÞ ¼ *gnsnþ1ðyÞ þ
Xn

j¼0

bjðnÞsn�jðyÞ: ð2:25Þ

In the case of orthogonal polynomials the three-term recurrence relation is sufficient
for reconstructing the moment functional (Favard’s Theorem [3]). A natural
question is whether the recurrence relations (2.24) and (2.25) are also sufficient for
the existence of a moment bifunctional for which the two sequences are biorthogonal
polynomials. Note that the specification of the numbers gn; aiðnÞ; ipn and
*gn; biðnÞ; ipn determines uniquely the two sequences of polynomials in Eqs. (2.24)
and (2.25) provided that gna0a*gn; 8nAN: The following theorem answers
positively to the existence of the moment bifunctional.

Theorem 2.1 (Favard-like Theorem for biorthogonal polynomials). If the constants

gn; *gn do not vanish for all nAN then there exists a unique moment bifunctional L for

which the two sequences of polynomials pn; sn as in Eqs. (2.24) and (2.25) are

biorthogonal.

Proof. As for the ordinary Favard’s theorem we proceed to the construction of the

bimoments mij ¼ LðxijyjÞ by induction. We introduce the associated monic

polynomials by defining

pnðxÞ :¼
1

p0
pnðxÞ

Yn�1

k¼0

gk; p0ðxÞ � 1; ð2:26Þ

snðyÞ :¼
1

s0
snðyÞ

Yn�1

k¼0

*gk; s0ðyÞ � 1: ð2:27Þ

The corresponding recurrence relations have the same form as in Eqs. (2.24) and
(2.25) except that now the constants gn; *gn are replaced by 1: The first moment m00 is
fixed by the requirement

1 ¼ Lðp0js0Þ ¼ m00p0s0; ð2:28Þ

since the polynomials p0; s0 are just nonzero constants.
Suppose now that the moments mij have already been defined for i; joN: We need

then to define the moments mNj for j ¼ 0;y;N � 1; and miN for i ¼ 0;y;N � 1 and

mNN : By imposing the orthogonality

0 ¼ LðpN js0Þ ¼ mN0 þ? ; ð2:29Þ

we define mN0; where the dots represent an expression which contains only moments
already defined (i.e. mi0; ioN). We define by induction on j the moments mNj ; the
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first having been defined above. We have, for joN � 1

0 ¼ LðpN jsjþ1Þ ¼ mN;jþ1 þ? ; ð2:30Þ

where again the dots represent an expression involving only previously defined
moments. This defines mN;jþ1: We can repeat the arguments for the moments

miN ; ioN by reversing the role of the pi’s and sj’s.

Finally, the moment mNN is defined by

det

m00 ? m0N

^ ^

mN0 ? mNN

0
B@

1
CA ¼ 1

p0s0

YN�1

k¼0

gk *gk; ð2:31Þ

where the only unknown is precisely mNN and its coefficient in the LHS does not
vanish since the corresponding minor is just

det

m00 ? m0N�1

^ ^

mN�10 ? mN�1N�1

0
B@

1
CA ¼ 1

p0s0

YN�2

k¼0

gk *gka0: ð2:32Þ

This completes the definition of the moment bifunctional L: &

We now turn our attention to some specific class of bilinear functionals L: We do
not require for the analysis to come that the biorthogonal polynomials exist,
although for applications to multi-matrix models this is essential. In those
applications the determinants Dn are proportional to the partition functions for
the corresponding multi-matrix integrals (up to a multiplicative factor of n!) and are
also interpretable as tau functions of KP and 2-Toda hierarchies [1,19].

3. Bilinear semiclassical functionals

The notion of semiclassical for ordinary moment functionals and the applications
to random matrices suggest the following

Definition 3.1. We say that a bilinear functional L :C½x�#CC½y�-C is semiclassical

if there exist four polynomials A1ðxÞ; B1ðxÞ and A2ðyÞ;B2ðyÞ of degrees a1 þ 1; b1 þ
1; a2 þ 1; b2 þ 1; respectively, such that the following distributional equations are
fulfilled:

ðDx3B1ðxÞ þ A1ðxÞÞ#1L ¼ B1ðxÞ#yL;

1#ðDy3B2ðyÞ þ A2ðyÞÞL ¼ x#B2ðyÞL:

(
ð3:33Þ

Explicitly these equations mean that, for any polynomials pðxÞ; sðyÞ
Lð�B1ðxÞp0ðxÞ þ A1ðxÞpðxÞjsðyÞÞ ¼ LðB1ðxÞpðxÞjysðyÞÞ; ð3:34Þ

LðpðxÞj � B2ðyÞs0ðyÞ þ A2ðyÞsðyÞÞ ¼ LðxpðxÞjB2ðyÞsðyÞÞ: ð3:35Þ
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Remark 3.1. We mentioned that any semiclassical moment functional is—in a
certain sense—a special case of bilinear semiclassical functional. We want to clarify
this relation here. Consider a semiclassical bifunctional in which A2ðyÞ ¼ ay and
B2ðyÞ ¼ 1: The defining relations become

Lð�B1p0 þ A1pjsÞ ¼ LðB1pjysÞ; Lðpj � s0 þ aysÞ ¼ LðxpjsÞ: ð3:36Þ
In particular for sðyÞ ¼ 1 the second in Eq. (3.36) reads

LðpjyÞ ¼ 1

a
Lðxpj1Þ: ð3:37Þ

The claim that the reader can check directly is that the moment functional Lrð�Þ :
¼ Lð�j1Þ is a semiclassical functional in the sense explained in the introduction with
AðxÞ ¼ A1ðxÞ � x

a
B1ðxÞ and BðxÞ ¼ B1ðxÞ: It will be clear later on that this

‘‘reduction’’ corresponds to a partial integration of a Gaussian weight.
In analogy with the orthogonal polynomials case we also define the class

Definition 3.2. For a semiclassical bifunctional L we define its biclass as the pair of
integers

ðs1; s2Þ ¼ ðmaxða1; b1Þ þ 1;maxða2; b2Þ þ 1Þ: ð3:38Þ

Note that from the definition some recurrence relations follow for the moments
mij : In order to spell them out we introduce the following notations for the

coefficients of the polynomials Ai;Bi

A1ðxÞ ¼
Xa1þ1

j¼0

a1ð jÞxj; B1ðxÞ :¼
Xb1þ1

j¼0

b1ð jÞxj; ð3:39Þ

A2ðyÞ ¼
Xa2þ1

j¼0

a2ð jÞyj ; B2ðyÞ :¼
Xb2þ1

j¼0

b2ð jÞyj : ð3:40Þ

Then the aforementioned recurrence relations are given by

Proposition 3.1. The moments mij of the semiclassical bifunctional L are subject to the

relationsXb1þ1

j¼0

b1ð jÞmnþj;mþ1 ¼ �n
Xb1þ1

j¼0

b1ð jÞmn�1þj;m þ
Xa1þ1

j¼0

a1ð jÞmnþj;m; ð3:41Þ

Xb2þ1

j¼0

b2ð jÞmnþ1;mþj ¼ �m
Xb2þ1

j¼0

b2ð jÞmn;m�1þj þ
Xa2þ1

j¼0

a2ð jÞmn;mþj: ð3:42Þ

Proof. From the definition of semi-classicity by setting pðxÞ ¼ xn and sðyÞ ¼ ym in
the two relations (3.34) and (3.35). &

The two recurrence relations give an overdetermined system for the moments: it is
not guaranteed a priori that solutions exist and if they do, how many. There are now
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four different cases, according to degðBiÞbdegðAiÞ; we address in the present paper the
case degðAiÞ4degðBiÞ; i ¼ 1; 2 (most relevant in the applications to random matrix
models) which is the analog of Case B in [10] and we could call ‘‘Case BB’’. The other
cases have less interesting applications in matrix models because they correspond to
potentials (in a sense which will be clear below) which are bounded at infinity. They are
certainly interesting from the point of view of Eqs. (3.41) and (3.42); for example it is a
simple exercise to check that if degðB1Þ ¼ degðB2Þ ¼ 1 and degðA1Þ ¼ degðA2Þ ¼ 0
then in general no nontrivial solutions exist for Eqs. (3.41) and (3.42).

For the rest of this paper we will make the following.

Assumption ðAÞ.
degðBiÞ þ 1pdegðAiÞ; i ¼ 1; 2: ð3:43Þ

Moreover in the case degðB1Þ þ 1 ¼ degðA1Þ and degðB2Þ þ 1 ¼ degðA2Þ we impose

det
a1ða1 þ 1Þ b1ðb1 þ 1Þ
b2ðb2 þ 1Þ a2ða2 þ 1Þ

 !
a0 when a1 ¼ b1 þ 1; a2 ¼ b2 þ 1: ð3:44Þ

Under this assumption we can prove

Proposition 3.2. The solutions to Eqs. (3.41) and (3.42) form a vector space of

dimension M :¼ s1 � s2 ¼ ða1 þ 1Þ � ða2 þ 1Þ:

Proof. The fact that the space of solutions is a vector space is obvious from the
linearity of the defining equations. We need to prove the assertion regarding the
dimension. We start by defining the (possibly formal) generating function of moments

Fðz;wÞ :¼
XN
j;k¼0

zjwk

j!k!
mjk ¼ LðexzjeywÞ: ð3:45Þ

From the recursion relation for the moments or (equivalently) from the definition of
semiclassicity, it follows that such a function satisfies the system of PDEs

½ð@z þ wÞB2ð@wÞ � A2ð@wÞ�Fðz;wÞ ¼ 0;

½ð@w þ zÞB1ð@zÞ � A1ð@zÞ�Fðz;wÞ ¼ 0:

(
ð3:46Þ

Conversely, any solution of this system which is analytic at z ¼ 0 ¼ w provides a
semiclassical bimoment functional associated with the data Ai;Bi: We now count the
solutions of this system. It will be clear later on that all the solutions are analytic at
z ¼ 0 ¼ w (in fact entire) so that any solution does define a moment functional.

System (3.46) is a higher order overdetermined system of PDEs for the single
function (or formal power series) Fðz;wÞ and the compatibility is readily seen since

½ð@z þ wÞB2ð@wÞ � A2ð@wÞ; ð@w þ zÞB1ð@zÞ � A1ð@zÞ� ð3:47Þ

¼ ½ð@z þ wÞB2ð@wÞ; ð@w þ zÞB1ð@zÞ� ð3:48Þ

¼ ½ð@z þ wÞ; ð@w þ zÞ�B2ð@wÞB1ð@zÞ ¼ ð1� 1ÞB2ð@wÞB1ð@zÞ ¼ 0: ð3:49Þ
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Now we express the system as a first-order linear system of PDEs on the suitable jet
extension. Let us introduce the notation

Fm;nðz;wÞ :¼ @m
z @

n
wFðz;wÞ: ð3:50Þ

The proof now proceeds according to the three different cases:
Case BB1: degðAiÞXdegðBiÞ þ 2; i ¼ 1; 2:
Case BB2: degðA1Þ ¼ degðB1Þ þ 1 but degðA2ÞXdegðB2Þ þ 2 (or vice versa).
Case BB3: degðA1Þ ¼ degðB1Þ þ 1; degðA2Þ ¼ degðB2Þ þ 1:
For convenience, we set the leading coefficients of the two polynomials Ai to unity

as this does not affect the dimension of the solution space of the system but makes
the formulas to come shorter to write.

In Case BB1 (aiXbi þ 2) we can write the two first-order systems

@wFm;n ¼ Fm;nþ1; m ¼ 0;y; a1;

n ¼ 0;y; a2 � 1;

@wFm;a2 ¼
Pb2þ1

k¼0

b2ðkÞðwFm;k þ Fmþ1;kÞ

�
Pa2
k¼0

a2ðkÞFm;k; m ¼ 0;y; a1 � 1:

@wFa1;a2 ¼
Pb2þ1

k¼0

b2ðkÞ

wFa1;k þ
Pb1þ1

j¼0

b1ð jÞðzFj;k þ Fj;kþ1Þ
 "

�
Pa1
j¼0

a1ð jÞFj;k

!#
�
Pa2
k¼0

a2ðkÞFa1;k:

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

ð3:51Þ

@zFm;n ¼ Fmþ1;n; m ¼ 0;y; a1 � 1;

n ¼ 0;y; a2;

@zFa1;n ¼
Pb1þ1

j¼0

b1ð jÞðzFj;n þ Fj;nþ1Þ

�
Pa1
j¼0

a1ð jÞFj;n; n ¼ 0;y; a2 � 1;

@zFa1;a2 ¼
Pb1þ1

j¼0

b1ð jÞ

zFj;a2 þ
Pb2þ1

k¼0

b2ðkÞðwFj;k þ Fjþ1;kÞ
��

�
Pa2
k¼0

a2ðkÞFj;k

��
�
Pa1
j¼0

a1ð jÞFj;a2 :

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

ð3:52Þ
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Note that the two systems are consistent for the unknowns Fm;n; m ¼ 0;y; a1; n ¼
0;y; a2 if we have bi þ 2pai; i ¼ 1; 2:

In Case BB2 with a1 ¼ b1 þ 1 the second system is not anymore consistent because
the RHS of the third equation in system (3.52) contains Fa1þ1;a2 : It must be replaced by

@zFm;n ¼ Fmþ1;n; m ¼ 0;y; a1 � 1;

n ¼ 0;y; a2;

@zFa1;n ¼
Pa1
j¼0

ðb1ð jÞðzFj;n þ Fj;nþ1Þ � a1ð jÞFj;nÞ; n ¼ 0;y; a2 � 1;

@zFa1;a2 ¼
Pa1
j¼0

b1ð jÞ zFj;a2 þ
Pb2þ1

k¼0

b2ðkÞwFj;k

��

�
Pa2
k¼0

a2ðkÞFj;k

��
�
Pa1
j¼0

a1ð jÞFj;a2

þ
Pa1�1

j¼0

Pb2þ1

k¼0

b2ðkÞb1ð jÞFjþ1;k

þb1ða1Þ
Pb2þ1

k¼0

b2ðkÞ

Pa1
j¼0

ðb1ð jÞðzFj;k þ Fj;kþ1Þ � a1ð jÞFj;kÞ
 !

:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð3:53Þ

Finally in the Case BB3 (a1 ¼ b1 þ 1 and a2 ¼ b2 þ 1), we have the two systems

@zFm;n ¼ Fmþ1;n; m ¼ 0;y; a1 � 1;

n ¼ 0;y; a2;

@zFa1;n ¼
Pa1
j¼0

ðb1ð jÞðzFj;n þ Fj;nþ1Þ � a1ð jÞFj;nÞ; n ¼ 0;y; a2 � 1;

ð1� b1ða1Þb2ða2ÞÞ@zFa1;a2

¼
Pa1
j¼0

b1ð jÞ zFj;a2 þ
Pa2
k¼0

ðwb2ðkÞ � a2ðkÞÞFj;k

� �

�
Pa1
j¼0

a1ð jÞFj;a2 þ
Pa1�1

j¼0

Pa2
k¼0

b1ð jÞb2ðkÞ@zFj;k

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð3:54Þ

and a similar system for the @w derivative. Note that in the third equation the
derivatives @zFj;k are defined by the first and second equation.

Since now ð1� b1ða1Þb2ða2ÞÞa0 as per the Assumption (which is ða1ða1 þ
1Þa2ða2 þ 2Þ � b1ða1Þb2ða2ÞÞa0 if we do not assume that the polynomials A1;A2 are
monic) then the system is still well defined; on the other hand, if ð1� b1ða1Þb2ða2ÞÞ ¼
0 then the last equation becomes a constraint.2

2We are not going to examine this case in this paper because it is more natural to study in the context of

semiclassical functionals of type AB or AA, i.e. when degðAiÞpdegðBiÞ:
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It is lengthy but straightforward to check that the two systems are indeed
compatible in each of the three cases. Since the size of the system is M ¼
ða1 þ 1Þ � ða2 þ 1Þ ¼ s1s2 then there are precisely M linearly independent solu-
tions. &

Remark 3.2. In principle, we would not have to check the compatibility because we
will construct later M ¼ s1s2 solutions to the system, which therefore will be proven
to be compatible a posteriori: the point of Proposition 3.2 is principally that the
dimension of the solution space certainly does not exceed M because that is the
dimension of a closed system in the jet space.

The proposition implies that the recurrence relations (3.41) and (3.42) determine
uniquely the functional L in terms of the moments mij with i ¼ 0;y; a1; j ¼
0;y; a2: We need to produce M ¼ s1s2 linearly independent semiclassical
functionals associated to the same data ðA1;B1;A2;B2Þ by means of integral
representations. Equivalently we can produce integral representations for the M

linearly independent solutions of the overdetermined system of PDEs (3.46). It is
precisely in this form that we will solve the problem, showing contextually that the
generating functions are indeed entire functions of w; z: The starting point is to
assume that such an integral representation exists: so suppose that

Fðz;wÞ ¼
Z
GðxÞ

Z
GðyÞ

dx dy Wðx; yÞexzþyw ð3:55Þ

is a double Laplace integral representation for a solution of (3.46).3

Plugging such a representation in the two equations in (3.46) and assuming that
the contours are so chosen as to allow integration by parts without boundary terms,
we obtain two first order equations for the biweight Wðx; yÞ

ðB1ðxÞ@x þ A1ðxÞ þ B0
1ðxÞÞWðx; yÞ ¼ y B1ðxÞWðx; yÞ; ð3:56Þ

ðB2ðyÞ@y þ A2ðyÞ þ B0
2ðyÞÞWðx; yÞ ¼ xB2ðyÞWðx; yÞ: ð3:57Þ

We make Assumption (B) that each pair ðAi;BiÞ are relatively prime or at most
share a factor ðx � cÞ (or ðy � sÞ). The reason is similar to the case of standard
semiclassical functionals. We will return on this genericity assumption later on.

The two differential equations (3.56) and (3.57) form an overdetermined system
for the biweight Wðx; yÞ which is compatible and can be solved to give the only
solution (up to a multiplicative nonzero constant)

Wðx; yÞ ¼ W1ðxÞW2ðyÞexy ¼ expð�V1ðxÞ � V2ðyÞ þ xyÞ; ð3:58Þ

W 0
1ðxÞ

W1ðxÞ
¼ A1ðxÞ þ B0

1ðxÞ
B1ðxÞ

;
W 0

2ðyÞ
W2ðyÞ

¼ A2ðyÞ þ B0
2ðyÞ

B2ðyÞ
; ð3:59Þ

3 In principle, one could integrate the two-form Wðx; yÞexzþyw dx 4dy over any 2-cycle, but here we do

not need such generality.
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V1ðxÞ :¼
Z

dx
A1ðxÞ þ B0

1ðxÞ
B1ðxÞ

; ð3:60Þ

V2ðyÞ :¼
Z

dy
A2ðyÞ þ B0

2ðyÞ
B2ðyÞ

: ð3:61Þ

We call the two functions V1ðxÞ; V2ðyÞ the potentials (borrowing the name from
statistical mechanics and random matrix context).

Note that if there are nonzero residues at the poles of
AiþB0

i
Bi

then the corresponding

potential have logarithmic singularities or poles. The general form of the biweight is

W1ðxÞ :¼
Yp1
j¼1

ðx � XjÞlj exp Vþ
1 ðxÞ þ

M1ðxÞQp1
j¼1 ðx � XjÞgj

" #
;

degðM1Þp
Xp1
j¼1

gj ; M1ðXjÞa0; ð3:62Þ

W2ðyÞ :¼
Yp2
k¼1

ðy � YjÞrk exp Vþ
2 ðyÞ þ

M2ðyÞQp2
k¼1 ðy � YkÞhk

" #
;

degðM2Þp
Xp2
k¼1

hk; M2ðYkÞa0: ð3:63Þ

In these formulas and in the rest of the paper Xj denote the zeroes of B1ðxÞ; gj þ 1

the corresponding multiplicities and �lj are the residues at Xj of the differential

dV1ðxÞ; similarly, Yk denote the zeroes of B2ðyÞ; hk þ 1 the corresponding
multiplicities and �rk the residues at Yk of the differential dV2ðyÞ:

The biclass of the corresponding semiclassical bifunctional is then the total degree
of the divisor of poles of the derivatives of the two potentials on the Riemann
spheres whose affine coordinates are x and y

s1 ¼ d1 þ
Xp1
j¼1

ð gj þ 1Þ; s2 ¼ d2 þ
Xp2
j¼1

ðhj þ 1Þ: ð3:64Þ

We will also use the notations X0 ¼ NAP1
x; Y0 ¼ NAP1

y:

3.1. The functionals

We will define two sets of paths in the two punctured Riemann spheres P1
x and P1

y:

We focus on the first sphere, the paths in the second being defined in analogous way.

More precisely, we define s1 ‘‘homologically’’ independent paths in P1
x\Cx and s2

paths in P2
y\Cy where Cx and Cy are suitable union of cuts and points: for example,

the set Cx is the union of all poles and essential singularities of W1ðxÞ and cuts
extending from the branch points to infinity.
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The reference to the homology is not in the ordinary sense: here we are considering
in fact the relative homology of the cut-punctured sphere with prescribed sectors

around the punctures. We first define some sectors S
ð jÞ
k ; j ¼ 1;y; p1; k ¼

0;y; gj � 1: around the points Xj for which gj40 (the multiple zeroes of B1ðxÞ)
in such a way that

RðV1ðxÞÞ x-Xj ;

xAS
ð jÞ
k

��!þN: ð3:65Þ

The number of sectors for each pole is the degree of that pole in the exponential part
of W1ðxÞ; that is d1 þ 1 for the pole at infinity and gj for the jth pole. Explicitly,

S
ð0Þ
k :¼ x : AC;

2kp� p
2
þ e

d1 þ 1
oargðxÞ þ argðvd1þ1Þ

d1 þ 1
o
2kpþ p

2
� e

d1 þ 1

� �
;

k ¼ 0;y; d1; ð3:66Þ

S
ð jÞ
k :¼ x : AC;

2kp� p
2
þ e

gj

oargðx � XjÞ þ
argðM1ðXjÞÞ

gj

o
2kpþ p

2
� e

gj

� �
;

k ¼ 0;y; gj � 1; j ¼ 1;y; p1: ð3:67Þ
These sectors are defined precisely in such a way that approaching any of the
essential singularities (i.e. an Xj such that gj40) the function W1ðxÞ tends to zero

faster than any power.

3.1.1. Definition of the contours

The definition of the contours follows directly [15], but we have to repeat it in both
Riemann spheres. For the sake of completeness we recall the way they are defined.

(1) For any Xj for which there is no essential singularity (i.e. gj ¼ 0), then we have

two subcases
(a) Corresponding to the Xj’s which are branch points or a pole (ljAC\N), we

take a loop starting at infinity in some fixed sector S
ð0Þ
kL

encircling the

singularity and going back to infinity in the same sector.
(b) For the Xj’s which are regular points (ljAN) we take a line joining Xj to

infinity and approaching N in the same sector S
ð0Þ
kL

as before.

(2) For any Xj for which there is an essential singularity (i.e. for which gj40) we

define gj contours starting from Xj in the sector S
ð jÞ
0 and returning to Xj in the

next (counterclockwise) sector. Finally we join the singularity Xj to N by a path

approaching N within the sector S
ð0Þ
kL

chosen at point 1(a).

(3) For X0 :¼ N we take d1 contours starting at X0 in the sector S
ð0Þ
k and returning

at X0 in the sector S
ð0Þ
kþ1:

4

4Note that in our assumptions on the degrees of Ai;Bi the degrees of the essential singularity at infinity

satisfy d1X1pd2:
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For later convenience we also fix a sector SL of width bop� e which contains the

sector S
ð0Þ
kL

used above. The picture below gives an example of the typical situation,

where the light grey sector represents SL: We will make use also of the sector E
which is a sector within the dual sector5 of SL (in dark shade of grey in the picture):
it is not difficult to realize that we can always arrange contours in such a way that E

is a small sector above the real positive axis (if the leading coefficient of Vþ
1 is real

and positive, otherwise the whole picture should be rotated appropriately).
We shall also require that all contours do not intersect except possibly at some Xj

and that each closed loop should either encircle only one singularity or have one of
the Xj on its support.

The result of this procedure produces precisely s1 contours. By virtue of Cauchy’s
theorem the choice is largely arbitrary.

An important feature for what follows is that when a contour Gj is closed (on the

sphere P1
x), then W1ðxÞ has a singularity and/or is unbounded in the region inside Gj :

We will call this property Property ðYÞ: Fig. 1
We then define the fundamental functionals by

LijðxnjymÞ :¼
Z
GðxÞ

i
�GðyÞ

j

dx4dy W1ðxÞW2ðyÞexyxnym;

i ¼ 1;y; s1; j ¼ 1;y; s2; n;mAN: ð3:68Þ

We point out that such contours are chosen so that the corresponding functionals

are defined on any monomials xjyk and such that integration by parts does not give
any boundary contribution. Each such functional is a semiclassical functional
associated to the data A1;B1;A2;B2 and their number is precisely the expected
number s1s2 for the solutions of Eq. (3.46) for the generating functions. The problem
now is to show that they are linearly independent.

Remark 3.3. A special care should be directed at the case d1 ¼ d2 ¼ 1; i.e. when
a1 ¼ b1 þ 1 and a2 ¼ b2 þ 1: Indeed in this circumstance the two polynomials

Vþ
1 ðxÞ ¼ d

2
x2 þ? and Vþ

2 ðyÞ ¼ s
2

y2 þ? are just quadratic. The biweight Wðx; yÞ
has then the form

Wðx; yÞ ¼ exp �d
2

x2 � s
2

y2 þ xy þ?
� �

½y�: ð3:69Þ

The condition on determinant (3.44) amounts precisely to the nondegeneracy of the

quadratic form �d
2

x2 � s
2

y2 þ xy: However, if jdjjsjp1 then the integrals as we have

defined are always divergent when two contours which stretch to infinity are
involved. This simply means that we cannot choose the surface of integration in the

factorized form GðxÞ � GðyÞ but need to resort to a surface which is not factorized.

5We recall that for a given sector S centered around a ray argðzÞ ¼ a0 with width Aop; the dual sector

S3 is the sector centered around the ray argðzÞ ¼ p� a0 and with width p� A:
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Alternatively we can analytically continue from the region of d; s for which the
integrals are convergent.

Some important remarks are in order. Consider the generating functions
associated to these contours

Fijðz;wÞ :¼
Z
GðxÞ

i
�GðyÞ

j

dx4dy W1ðxÞW2ðyÞexyexzþyw: ð3:70Þ

They are entire functions of z;w and hence are indeed generating functions of the
bimoment functionals Lijð�j�Þ: Indeed, our assumptions on the degrees guarantee

that Vþ
i have degree at least 2; which is sufficient to guarantee analyticity w.r.t. z;w

in the whole complex plane.

Remark 3.4. If the index i corresponds to a bounded contour GðxÞ
i then Fijðz;wÞ is a

function of exponential type in z (similarly for w if GðyÞ
j is bounded).

Remark 3.5. If the index i corresponds to one of the contours GðxÞ
i defined at point

1(a) or 1(b) above, then Fijðz;wÞ is of exponential type only for z in an appropriate

sector which contains the sector E dual to the sector SL:

Before entering into the details of the proof of linear independence let us return to
the Assumption ðBÞ about the pairs ðAi;BiÞ: Suppose that—say—A1 and B1 have a

common factor ðx � cÞK ; KX1 and that they have no other common factor. That is
let us suppose that

A1ðxÞ ¼ ðx � cÞl
Ã1ðxÞ; B1ðxÞ ¼ ðx � cÞr

B̃1ðxÞ; l40or;

K :¼ minðl; rÞ; ð3:71Þ

with Ã1ðcÞa0aB̃1ðcÞ: Then formula (3.59) would give

V 0
1ðxÞ ¼ �W 0

1ðxÞ
W1ðxÞ

¼ ðx � cÞl
Ã1 þ rðx � cÞr�1

B̃1 þ ðx � cÞr
B̃0
1

ðx � cÞr
B̃1

; ð3:72Þ

so that the divisor of poles of dV1ðxÞ has degree less than s1: Now we have two
possible cases:

(i) If lXr � 1 then we can recast Eq. (3.72) in the form

�W 0
1ðxÞ

W1ðxÞ
¼ ðx � cÞl�rþ1

Ã1 þ ðr � 1ÞB̃1 þ ððx � cÞB̃1Þ0

ðx � cÞB̃1

; ð3:73Þ

which is equivalent to a problem in which the polynomials A1;B1 are substituted by

A1 :¼ ðx � cÞl�rþ1
Ã1 þ ðK � 1ÞB̃1 and B1 :¼ ðx � cÞB̃1; respectively, which now

satisfy Assumption ðBÞ: In particular, the definition of the contours provides the
correct number of distinct contours for the new pair ðA1;B1Þ; that is s1 � r þ 1

distinct contours (in the x plane). We need to recover ðK � 1Þs2 solutions if l4r � 1
or ls2 ¼ Ks2 if l ¼ r � 1:
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(ii) If lpr � 2 then we can recast Eq. (3.72) in the form

�W 0
1ðxÞ

W1ðxÞ
¼ Ã1 þ lðx � cÞr�1�l

B̃1 þ ððx � cÞr�l
B̃1Þ0

ðx � cÞr�l
B̃1

; ð3:74Þ

now equivalent to a problem in which the polynomials A1;B1 are substituted by

A1 :¼ Ã1 þ Kðx � cÞr�l�1
B̃1 and B1 :¼ ðx � cÞr�l

B̃1; respectively, which do not have

the factor ðx � cÞ in common and hence satisfy Assumption ðBÞ: The definition of
the contours provides the correct number of distinct contours for the new pair
ðA1;B1Þ; and we need to recover Ks2 solutions.

The next proposition shows how to recover the missing solutions.

Proposition 3.3. If

A1ðxÞ ¼ ðx � cÞK
Ã1ðxÞ; B1ðxÞ ¼ ðx � cÞK

B̃1ðxÞ; KX1; ð3:75Þ

and Ã1ðxÞ; B̃1ðxÞ do not vanish both at c then Eqs. (3.46) have also the solutions

F
ð jÞ
k ðz;wÞ ¼ ecz

Z
GðyÞ

k

dy ðy þ zÞj
eyðwþcÞW2ðyÞ; j ¼ 0;y;K � 1: ð3:76Þ

Proof. The fact that functions (3.76) solve our system can be checked directly.
Indeed the first equation in (3.46) is satisfied because the differential operator reads

ð@w þ zÞB1ð@zÞ � A1ð@zÞ ¼ ½ð@w þ zÞB̃1ð@zÞ � Ã1ð@zÞ�ð@z � cÞK ; ð3:77Þ

and the proposed solutions are linear combination of functions of the form zreczfrðwÞ;
roK which are all in the kernel of ð@z � cÞK : The second equation in (3.46) now reads

½ð@z þ wÞB2ð@wÞ � A2ð@wÞ�ecz

Z
GðyÞ

k

dy ðy þ zÞj
eyðwþcÞW2ðyÞ

¼ cecz

Z
GðyÞ

k

dy B2ðyÞðy þ zÞj
eyðwþcÞW2ðyÞ

þ ecz

Z
GðyÞ

k

dy ðB2ðyÞð@z þ wÞ � A2ðyÞÞðy þ zÞj
eyðwþcÞW2ðyÞ

¼ ecz

Z
GðyÞ

k

dy ðB2ðyÞðc þ @zÞ � A2ðyÞÞðy þ zÞj
eyðwþcÞW2ðyÞ

þ ecz

Z
GðyÞ

k

dy B2ðyÞW2ðyÞðy þ zÞj
eyc@yðeywÞ

¼ ecz

Z
GðyÞ

k

dy ðB2ðyÞð@z þ cÞ � A2ðyÞÞðy þ zÞj
eyðwþcÞW2ðyÞ

þ ecz

Z
GðyÞ

k

dy B2ðyÞW2ðyÞðy þ zÞj
ecy@yðeywÞ
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¼ ecz

Z
GðyÞ

k

dy W2ðyÞeyðwþcÞ½B2ðyÞ½@z � @y��ðy þ zÞj

þ ecz

Z
GðyÞ

k

dy ðW 0
2ðyÞB2ðyÞ � ðA2ðyÞ þ B0

1ðyÞÞW2ðyÞÞðy þ zÞj
eyðwþcÞ ¼ 0:

In Case (ii) (or in Case (i) but with l ¼ r � 1) these solutions are precisely the Ks2
missing solutions.

In Case (i) with lXr only l � 1 ¼ K � 1 among solutions (3.76) are linearly
independent from those defined in terms of the contour integrals. To see this we write
the weight

�W 0
1ðxÞ

W1ðxÞ
¼ r

x � c
þ Ã1 þ B̃0

1

B̃1

: ð3:78Þ

Since B̃1ðcÞa0 then W1ðxÞ has a pole of order r at x ¼ c and can be written as

W1ðxÞ ¼ ðx � cÞ�r
w1ðxÞ; ð3:79Þ

with w1ðxÞ analytic at x ¼ c and w1ðcÞa0: The contour which comes from infinity,
encircles c and goes back to infinity can be retracted to a circle around the pole, so
that the corresponding solutions given by the integral representation would beZ

GðkÞ
y

I
jx�cj¼e

dx4dy ðx � cÞ�r
w1ðxÞexðzþyÞþwyW2ðyÞ

¼ 2ipðr � 1Þ!
Z
GðkÞ

y

dy @r�1
x ðw1ðxÞexðzþyÞÞ

�����
x¼c

W2ðyÞ:

Such a solution is clearly an appropriate linear combination of the F
ð jÞ
k s j ¼

0;y; r � 1pK � 1 with the nonzero coefficient w1ðcÞ in front of F
ðr�1Þ
k : &

Remark 3.6. The function in Eq. (3.76) with j ¼ 0 corresponds to a moment
functional L ¼ dc#Y; where Y is any semiclassical moment functional associated
to A2ðyÞ;B2ðyÞ and dc is the delta functional supported at x ¼ c on the space of
polynomials C½x�: The other solutions in Eq. (3.76) with j40 are also supported at c

but are not factorized and have the form

L ¼
Xj

k¼0

dðkÞc #Yk; ð3:80Þ

for suitable moment functionals Yk:

If there are other roots common to Ai;Bi we can repeat the procedure until we
have a reduced problem which satisfies Assumption ðBÞ:

Therefore from this point on we will assume that the data ðA1;B1;A2;B2Þ satisfy
Assumption ðBÞ:
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Theorem 3.1. The functionals Lij or—equivalently—the generating functions

Fijðz;wÞ :¼
Z
GðxÞ

i
�GðyÞ

j

dx4dy W1ðxÞW2ðyÞexyexzþyw ð3:81Þ

are linearly independent.

The proof is an adaptation of [15] with a small improvement (and a correction).
We prepare a few lemmas.

Lemma 3.1 (Theorem of Mergelyan [20, p. 367]). If E is a closed bounded set not

separating the plane and if FðzÞ is continuous on E and analytic at the interior points of

E, then FðzÞ can be uniformly approximated on E by polynomials.

The next theorem is a rephrasing of the content of [15] for the proof of which we
refer ibidem.

Theorem 3.2 (Miller–Shapiro Theorem). If G is a closed simple Jordan curve and

FðzÞ is an analytic function (possibly with singularities and/or multivalued) in the points

inside G such that the equationI
G

FðzÞpðzÞ dz ¼ 0 ð3:82Þ

holds for any polynomial pðzÞAðz � z0ÞC½z� (for some fixed z0AG), then FðzÞ has no

singularities inside G and it is bounded in the interior region of and on G:

Suppose now by contradiction that there exist constants Cij not all of which zero

such thatXs1

i¼1

Xs2

j¼1

Cij

Z
GðxÞ

i
�GðyÞ

j

dx4dy W1ðxÞW2ðyÞexyexzþyw � 0: ð3:83Þ

Reduction of the problem. We claim that if Eq. (3.83) holds then we also have

0 �
Xs1

i¼1

Xs2

j¼1

Cij

Z
GðxÞ

i
�GðyÞ

j

dx4dy W1ðxÞW2ðyÞexzþyw

¼
Xs1

i¼1

Xs2

j¼1

Cij XiðzÞCjðwÞ; ð3:84Þ

where we have defined

XiðzÞ :¼
Z
GðxÞ

i

dx W1ðxÞexz; ð3:85Þ

CjðwÞ :¼
Z
GðyÞ

j

dy W2ðyÞeyw: ð3:86Þ
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Indeed, consider the auxiliary function of the new variable r

Aðr; z;wÞ :¼
Xs1

i¼1

Xs2

j¼1

Cij

Z
GðxÞ

i
�GðyÞ

j

dx4dy W1ðxÞW2ðyÞerxyþzxþwy: ð3:87Þ

Here z;w play the role of parameters. This function is entire in r (because by our

assumptions degðVþ
i ÞX2 and hence for all contours going to infinity the integrand

goes to zero at least as expð�jxj2 � jyj2Þ), and by applying ð@z@wÞK to Eq. (3.83) we
have

0 � ð@z@wÞK
Að1; z;wÞ ¼ d

dr

� �K

Aðr; z;wÞ
�����
r¼1

; 8KAN: ð3:88Þ

Therefore we also have Að0; z;wÞ � 0; 8z;wAC; which is Eq. (3.84).
This shows that proving that the functions Fij are linearly independent is

equivalent to proving that the two sets of functions fXiðzÞgi¼1;y;s1
and

fCjðwÞgj¼1;y;s2
are (separately) linearly independent.

Both the Xi’s and the Cj’s are now solutions of the decoupled ODEs of the same

type (i.e. with linear coefficients)

zB1
d

dz

� �
� A1

d

dz

� �� �
XiðzÞ ¼ 0; ð3:89Þ

wB2
d

dw

� �
� A2

d

dw

� �� �
CjðwÞ ¼ 0: ð3:90Þ

Equivalently, we may say that Xi’s and Cj’s are generating functions for the

moments of semiclassical functionals associated to ðA1;B1Þ and ðA2;B2Þ; respec-
tively. Their linear independence was proven in [15]. Unfortunately, this latter paper
has a small flaw that makes one step of the proof impossible when
degðAiÞ4degðBiÞ þ 2 (while it is correct if degðAiÞpdegðBiÞ þ 2) [16].

On the other side, the linear independence of certain integral representation for
semiclassical moment functionals was obtained in [10]; however, their definitions for
the contours force them to a procedure of regularization in certain cases which is
elegantly bypassed by the definition of the contours in [15]. We prefer to fix the proof
of [15] since then we will not need any regularization.

3.2. Linear independence of the Xi’s

In this section we prove the linear independence of the functions Xi: This will also
prove the linear independence of the functionsCj since they are precisely of the same

form. We assume that the polynomial Vþ
1 ðxÞ appearing in Eq. (3.62) has the form

Vþ
1 ðxÞ ¼

1

d þ 1
xdþ1 þ

Xd

j¼0

vjx
j ðd :¼ d1X1Þ: ð3:91Þ
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This does not affect the generality of the problem in as much as it amounts to a
rescaling of the variable x: To prove their linear independence we can reduce further

the problem to the case where Vþ
1 ðxÞ ¼ 1

dþ1
xdþ1: Indeed, suppose that there exist

constants Aj such that

Wðz; v0;y; vdÞ :¼
Xs1

j¼1

Aj

Z
Gj

dx W1ðxÞexz � 0; ð3:92Þ

where we have emphasized the dependence on the subleading coefficients of Vþ
1 as

given in Eqs. (3.91) and (3.62). Considering it as a function of the variables v0;y; vd

then Eq. (3.92) implies that

@jaj

@ *
%
va

Wðz; *
%
vÞ
����
*vi¼vi

¼ 0; 8a ¼ ða1;y; adÞANd ; 8zAC: ð3:93Þ

Since Wðz; *v0;y; *vdÞ is clearly entire in the variables *vi; Eq. (3.93) implies that
actually it does not depend on them. In other words if the Xi’s are linearly dependent
with constants Ai then also the Xi’s where we ‘‘switch off’’ the coefficients vi of the
potential are linearly dependent with the same constants Ai:

Therefore, it also does not affect the generality of the problem of showing linear

independence to assume the specific form for Vþ
1

Vþ
1 ðxÞ ¼

1

d þ 1
xdþ1: ð3:94Þ

We now analyse the asymptotic behaviour, and we need the following definition

(here given for a Vþ
1 more general than the one above).

Definition 3.3. The steepest descent contours (SDCs) for integrals of the form

IGðzÞ :¼
Z
G
dx e�Vþ

1
ðxÞþxzHðxÞ; ð3:95Þ

with HðxÞ of polynomial growth at x ¼ N; are the contours gk uniquely defined, as
z-N within the sector E ¼ fargðzÞAð� p

2ðdþ1Þ; 0Þg; by

gk :¼
(

xAC;IðVþ
1 ðxÞ � xzÞ ¼ IðVþ

1 ðxkðzÞÞ � zxkðzÞÞ; :

RðVþ
1 ðxÞÞ x-N

xAgk

�!þN

�
; ð3:96Þ

where xkðzÞ are the d1 branches of the solution to

Vþ
1 ðxÞ ¼ z; ð3:97Þ

which behave as z
1
d1 as z-N in the sector, for the different determinations of the

roots of z: Their homology class is constant as x-N within the sector.
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With reference to Fig. 1, the sector E is the narrow dark-shaded dual sector of SL

(light-shaded).

Proposition 3.4. Let E be the sector argðzÞAð� p
2ðdþ1Þ; 0Þ at z ¼ N: Then the Laplace–

Fourier transforms over the SDCs gk;

FkðzÞ :¼
Z
gk

dx W1ðxÞezx; k ¼ 1;y; d; ð3:98Þ

have the following asymptotic leading behaviour in the sector E:

FkðzÞ ¼ K

ffiffiffiffiffiffi
2p
d

r
z
2Aþ1�d

2d okðA�1
2Þ exp

d

d þ 1
z

dþ1
d ok

� �
1þ O

1

z

� �� �
; ð3:99Þ

A :¼
Xp

j¼1

lj ; o :¼ e
2ip
d ; ð3:100Þ

where Ka0 is a constant found in the proof.

Proof. The proof of this asymptotic behaviour is an application of the saddle

point method. Writing z ¼ jzjeiy with the change x ¼ jzj1=dx we can rewrite

*

SL X

X

X

3

1

2

SkL

ε

Fig. 1. The set of contours in the x Riemann sphere P1
x: Here we have three zeroes of BðxÞ; X1;X2;X3;

and the singularity at infinity X0 of order d1 þ 1 ¼ 5: The zero X1 has multiplicity gj þ 1 ¼ 4 and the

corresponding essential singularity behaves like expðx � X1Þ�3; the zero X2 is a regular point for W1ðxÞ;
namely l2AN and finally the zero X3 is either a branch point of W1; in which case the cut extends to

infinity ‘‘inside’’ the contour (in the picture), or a pole (l3eN).
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the integralsZ
G

e
� 1

dþ1
xdþ1þxz

Yp

j¼1

ðx � XjÞlj eTðxÞ dx ð3:101Þ

¼ jzj
1
d jzj

A
d

Z
G
exp �jzj

dþ1
d

xdþ1

d þ 1
� xeiy

 !" #
xA

�
Yp

j¼1

1� Xj

xjzj
1
d

0
@

1
Alj

eTðjzj1=dxÞ dx; ð3:102Þ

TðxÞ :¼ exp
M1ðxÞQp

j¼1 ðx � XjÞgj

" #
jxj-N
���!Ka0: ð3:103Þ

Let us set l :¼ jzj
dþ1

d and change variable of integration to

s ¼ SðxÞ :¼ 1

d þ 1
xdþ1 � xeiy: ð3:104Þ

Note that the rescaling of variable leaves the contour G in the same ‘‘homology’’
class, so that we can take the contour as fixed in the x-plane. The saddle points for
this exponential are the roots of

0 ¼ S0ðxÞ ¼ xd � eiy; ð3:105Þ

that is the d roots of eiy: The corresponding critical values are

sðkÞcr ðyÞ :¼ � d

d þ 1
okeiy dþ1

d ; o :¼ e2ip=d ; k ¼ 0;y; d � 1: ð3:106Þ

The map s ¼ SðxÞ is a d þ 1-fold covering of the s-plane by the x-plane with square-

root-type branching points at the s
ðkÞ
cr ðyÞ: Moreover, each of the d þ 1 sectors

(around x ¼ N) for which Rðxdþ1Þ40 is mapped to the single sector

S :¼ sAC;�p
2
þ eoargðsÞop

2
� e

n o
: ð3:107Þ

The inverse map x ¼ xðsÞ is univalued if we perform the cuts on the s-plane starting

at each s
ð jÞ
cr ðyÞ and going to RðsÞ ¼ þN parallel to the real axis. Such cuts are

distinct for generic values of y: We obtain a simply connected domain in the s-plane
(see Fig. 2). By their definition the SDCs gj corresponds to (the two rims of) the

horizontal cuts in the s-plane that go from the critical points s
ð jÞ
cr ðyÞ to RðsÞ ¼ þN:

The cuts are distinct if Iðei
dþ1

d
yþ2ik

p
dÞaIðei

dþ1
d

yþ2ij
p
dÞ; for jak; that is away from

the Stokes’ lines at infinity

lk ¼ argðzÞ ¼ pk

d þ 1
; kA

1

2
Z

� �
: ð3:108Þ
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Therefore if z approaches infinity along a ray distinct from the Stokes’ lines and
within the same sector between them, the asymptotic expansion does not change.

3.2.1. Asymptotic evaluation of the steepest descent integrals

The integrals corresponding to the steepest descent path gk become

jzj
Aþ1

d

Z
gk

e�lsxðsÞA
gðs; jzjÞ dx

ds
ds; ð3:109Þ

gðs; jzjÞ :¼
Yp

j¼1

1� Xj

xðsÞjzj
1
d

0
@

1
Alj

eTðjzj1=dxðsÞÞ; lim
jzj-N

gðs; jzjÞ ¼ Ka0; ð3:110Þ

where l :¼ jzj
dþ1

d : The Jacobian of the change of variable has square-root types

singularity at the critical point s
ðkÞ
cr since the singularities (in the sense of singularity

theory) of SðxÞ are simple and nondegenerate.
Then the above integral becomes, upon developing the Jacobian in Puiseux series,

jzj
Aþ1

d

Z
gk

e�lsgðs; jzjÞxðsÞA dx
ds

ðsÞ ð3:111Þ

¼ jzj
Aþ1

d e�lscr

Z
gk

ds e�lðs�scrÞ xðsÞA
gðs; jzjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 d2s

dx2
ðscrÞðs � scrÞ

q ð1þ Oðs � scrÞÞ ð3:112Þ

CK jzj
Aþ1

d ei
A
d
yokAe�lscrð2de

d�1
d

yokÞ�
1
22

Z
Rþ

e�lt dtffiffi
t

p ð3:113Þ

¼ Kjzj
Aþ1

d okAei
A
d
ye�lscrð2de

d�1
d

yokÞ�
1
22

ffiffiffi
p

p
l�

1
2 ð3:114Þ

¼ K

ffiffiffiffiffiffi
2p
d

r
z
2Aþ1�d

2d okðA�1
2
Þ exp

d

d þ 1
z

dþ1
d ok

� �
: & ð3:115Þ

In particular, Proposition 3.4 shows that the SDC integrals Fk are linearly
independent because their asymptotics are linearly independent.

γ

Γ

Fig. 2. The steepest descent contours for d ¼ 4: The left depicts the x-plane, the right the s-plane.

M. Bertola / Journal of Approximation Theory 121 (2003) 71–9994



Since the SDCs gk and the contours Gk span the same homology, we can always
assume that the Xi corresponding to the closed loops attached to N are integrals
over the SDC gk: Suppose now that there exist constants Ai such that

Xs1

j¼1

AiXiðzÞ � 0: ð3:116Þ

We split the sum into two parts; the first one contains all contour integrals
corresponding to the bounded paths, the paths joining the finite zeroes Xi’s to
infinity, and loops attached to X0 ¼ N approaching N within the sector SL: We
denote the subset of the corresponding indices by IL: Now it is a simple check which
we leave to the reader that all these integrals are of exponential type in the sector E
dual to SL:

6

The second subset of indices IR corresponds to the remaining contour integrals
over paths which come from and return to N outside the sector SL; a careful
counting gives jIRj ¼ ½d=2�: The sum in (3.116) can be accordingly separated inX

iAIL

AiXiðzÞ ¼ �
X
iAIR

AiXiðzÞ: ð3:117Þ

We want to conclude that the two sides of Eq. (3.117) must vanish separately.
Indeed, we have remarked above that the LHS in (3.117) is of exponential type in the
sector E: We now prove that on the contrary the RHS cannot be of this exponential
type except in the case that each of the Ai’s vanishes for i belonging to IR: From
Proposition 3.4 we deduce that among the SDC integrals there are precisely ½d=2�
that have a dominant exponential behaviour of the type expð d

dþ1
z

dþ1
d okÞ with

Rðz
dþ1

d okÞ40 in the sector E; which is not of exponential type; since the SDCs can
be obtained by suitable linear combinations with integer coefficients of the chosen
contours then the ½d=2� functions Xi; iAIR must span the same space as the
dominant ½d=2� linearly independent SDCs in the sector E; modulo the span of
Xi; iAIL: In formulas

ZfFk: Fk dominant in EgCZfXi; 8igmod ZfXi; iAILg ¼ ZfXi; iAIRg: ð3:118Þ

Since no nontrivial linear combination of the ½d=2� dominant SDC integrals Fk’s in E
can be of exponential type, the only possibility for the RHS of Eq. (3.117) to be of
exponential type in the sector E is that

Ai ¼ 0; 8iAIR:

Let us now focus on the terms in the LHS of Eq. (3.117). We must now prove that
also Ai ¼ 0; iAIL: We can now follow [15] without hurdles. We sketch the main
steps below for the sake of completeness.

6Saying that a function is of exponential type in a given sector means that there exist constants K and C

such that the function is bounded by jzjK eCjzj in that sector.
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We need to prove that

QðzÞ :¼
X
iAIL

Ai

Z
Gi

dx W1ðxÞexz � 0 3 Ai ¼ 0 8iAIL: ð3:119Þ

Let a be a point within the sector E and far enough from the origin so as to leave all
contours Gi; iAIL to the left.7 Let us choose a contour C starting at z and going to

infinity in the sector to E: Then we integrate QðzÞe�az along C: Since ezðx�aÞW1ðxÞ is
jointly absolutely integrable with respect to the arc-length on each of the Gi; iAIL

and C; we may interchange the order of integration to obtainX
iAIL

Ai

Z
Gi

1

x � a
ezðx�aÞW1ðxÞ dx � 0: ð3:120Þ

Repeating this r � 1 times and then setting z ¼ 0 at the end, we obtainX
i

Ai

Z
Gi

ðx � aÞ�r
W1ðxÞ dx � 0; 8rAN: ð3:121Þ

Let us define

*vðxÞ :¼ W1ðxÞðx � aÞ2; ð3:122Þ

so that Eq. (3.121) is now turned intoX
i

Ai

Z
Gi

ðx � aÞ�r
*vðxÞ dx

ðx � aÞ2
� 0; 8rAN: ð3:123Þ

Let us perform the change of variable o ¼ 1
x�a

(a homographic transformation). We

denote by gi the images of the contours Gi and by f ðoÞ the function *vðxðoÞÞ:
Eq. (3.121) (or equivalently Eq. (3.123)) now becomesX

iAIL

Ai

Z
gi

do f ðoÞPðoÞ ¼ 0; 8PAC½o�: ð3:124Þ

Note that in the variable o all contours are in the finite region of the o-plane and the
contours look like the ones in Fig. 3 (the missing loops attached to 0 ¼ oðX0Þ ¼
oðNÞ were the contours indexed by IR).

We denote by E the compact set in the o-plane constituted by all contours
gi; iAIL and the interiors of the closed loops. This set E satisfies the requirements of
Lemma 3.1. Moreover, the contours gi have Property ðYÞ with respect to f ðoÞ:

We now start proving that the Ai’s vanish. Consider firstly a contour gi without
interior points (i.e. those segments which join two different Xi’s). Let oðtÞ be a
parametric representation where tA½0;L� is the arc-length parameter so that o0ðtÞ is
continuous and nonvanishing on ½0;L�: Therefore it follows that the function

wiðoÞ :¼
f ðoÞ
o0ðtÞ; oAgi;

0; oAE\gi

8<
: ð3:125Þ

7More precisely in the half-plane to the left of the perpendicular to the bisecant of the dual sector to E:
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is continuous on E and analytic in the interior points of E: Hence, there exists a
sequence of polynomials PnðoÞ converging uniformly to wiðoÞ on E (by Lemma 3.1).
Plugging into Eq. (3.124) and passing to the limit we obtain

Ai

Z L

0

dt jf ðoðtÞÞj2 ¼ 0; ð3:126Þ

which implies that Ai vanishes.
Let us now consider a closed loop, say gl : Let TðoÞ be any polynomial vanishing

at o0Agl where o0 is the image of the (unique) zero of B1ðxÞ on the contour Gl : Then
we define

FlðoÞ :¼
TðoÞ; oAgl and its interior;

0; oAE\fgl and its interiorg:

(
ð3:127Þ

Again, flðoÞ satisfies the requirement of Lemma 3.1 and hence can be approximated
uniformly by a sequence of polynomials. Passing the limit under the integral we then
obtain

Al

Z
gl

do f ðoÞTðoÞ ¼ 0; 8TAðo� o0ÞC½o�: ð3:128Þ

We then use Theorem 3.2 to conclude that f should be bounded inside gl : But this is

a contradiction because f ðoÞ has Property ðYÞ w.r.t. gl since *vðxÞ ¼ W1ðxÞðx � aÞ2
had the same property w.r.t. the closed contour Gl : This is a contradiction unless the
Al vanishes.

Therefore we have proven that all the Ai must vanish, i.e. the XiðzÞ are linearly
independent. Repeating for the CjðwÞ we conclude the proof of Theorem 3.1. &

Fig. 3. The contours gi; iAIL in the o-plane.
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4. Conclusion

We make a few remarks on the cases we have not considered, i.e. when
degðAiÞpdegðBiÞ for one or both i ¼ 1; 2: Indeed (up to some care in the
definition of the contours for reasons of convergence), one can easily define some

solutions of Eqs. (3.46) in the form of double Laplace–Fourier integrals and also
prove their linear independence. More complicated is to produce the analogue of
Proposition 3.2, that is to have an a priori knowledge of the dimension of the space
of solutions to Eqs. (3.46): the result (which we do not prove here) is that there are
M ¼ s1s2 þ 1 solutions. The moment recurrences (3.41) and (3.42) say then that the
bifunctionals are actually M � 1 in Case AB or M � 2 in Case AA. That is one has
to give a criterion to select amongst the solutions to Eq. (3.46) the ones which are
analytic at w ¼ 0 ¼ z: We will return on this point in a future publication. Suffices
here to say that a similar problem occurs for the semiclassical moment functionals
L :C½x�-C: As we have illustrated in the introduction the generating function
satisfies Eq. (1.12), but in general not all solutions are analytic at z ¼ 0 and hence do
not define any moment functional. This can be understood by looking at the
recurrence relations satisfied by the moments:

n
Xd

j¼0

bð jÞmnþj�1 ¼
Xk

j¼0

að jÞmnþj ; ð4:129Þ

where d ¼ degðBÞ4degðAÞ þ 1 ¼ k þ 1: In this case the resulting d-term recurrence
relation has actually only d � 1 solutions because, for n ¼ 0 the above equation gives
a constraint on the initial conditions8

0 ¼
Xk

j¼0

að jÞmj: ð4:130Þ

This should be regarded as the requirement that the solution of Eq. (1.12) be analytic
at z ¼ 0: Now, in the bilinear case we have the additional problem that the
recurrence relations for the bimoments are overdetermined and hence
the corresponding constraint on the initial conditions must be shown to be
compatible as well. We postpone the more detailed discussion of this problem to a
future publication.
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8When degðAÞ þ 1 ¼ degðBÞ ¼ d then generically there are d � 1 solutions, except in some cases when

(n s.t. aðd � 1Þ ¼ nbðdÞ: See [9] for more details.
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